Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Odd-electron bonds have unique electronic structures and are often encountered as transiently stable, homonuclear species. In this study, a pair of copper complexes supported by Group 13 metalloligands, M[N(( o -C 6 H 4 )NCH 2 P i Pr 2 ) 3 ] (M = Al or Ga), featuring two-center/one-electron (2c/1e) σ-bonds were synthesized by one-electron reduction of the corresponding Cu( i ) ⇢ M(III) counterparts. The copper bimetallic complexes were investigated by X-ray diffraction, cyclic voltammetry, electron paramagnetic spectroscopy, and density functional theory calculations. The combined experimental and theoretical data corroborate that the unpaired spin is delocalized across Cu, M, and ancillary atoms, and the singly occupied molecular orbital (SOMO) corresponds to a σ-(Cu–M) bond involving the Cu 4p z and M n s/ n p z atomic orbitals. Collectively, the data suggest the covalent nature of these interactions, which represent the first examples of odd-electron σ-bonds for the heavier Group 13 elements Al and Ga.more » « less
-
Abstract Pincer‐type nickel–aluminum complexes were synthesized using two equivalents of the phosphinoamide, [PhNCH2PiPr2]−. The Ni0–AlIIIcomplexes, {(MesPAlP)Ni}2(μ‐N2) and {(MesPAlP)Ni}2(μ‐COD), whereMesPAlP is (Mes)Al(NPhCH2PiPr2)2, were structurally characterized. The (PAlP)Ni system exhibited cooperative bond cleavage mediated by the two‐site Ni–Al unit, including oxidative addition of aryl halides, H2activation, and ortho‐directed C−H bond activation of pyridine N‐oxide. One intriguing reaction is the reversible intramolecular transfer of the mesityl ring from the Al to the Ni site, which is evocative of the transmetalation step during cross‐coupling catalysis. The aryl‐transfer product,(THF)Al(NPhCH2PiPr2)2Ni(Mes), is the first example of a first‐row transition metal–aluminyl pincer complex. The addition of a judicious donor enables the Al metalloligand to convert reversibly between the alane and aluminyl forms via aryl group transfer to and from Ni, respectively. Theoretical calculations support a zwitterionic Niδ−–Alδ+electronic structure in the nickel–aluminyl complex.more » « less
-
Understanding H 2 binding and activation is important in the context of designing transition metal catalysts for many processes, including hydrogenation and the interconversion of H 2 with protons and electrons. This work reports the first thermodynamic and kinetic H 2 binding studies for an isostructural series of first-row metal complexes: NiML, where M = Al ( 1 ), Ga ( 2 ), and In ( 3 ), and L = [N( o -(NCH 2 P i Pr 2 )C 6 H 4 ) 3 ] 3− . Thermodynamic free energies (Δ G °) and free energies of activation (Δ G ‡ ) for binding equilibria were obtained via variable-temperature 31 P NMR studies and lineshape analysis. The supporting metal exerts a large influence on the thermodynamic favorability of both H 2 and N 2 binding to Ni, with Δ G ° values for H 2 binding found to span nearly the entire range of previous reports. The non-classical H 2 adduct, (η 2 -H 2 )NiInL ( 3 -H 2 ), was structurally characterized by single-crystal neutron diffraction—the first such study for a Ni(η 2 -H 2 ) complex or any d 10 M(η 2 -H 2 ) complex. UV-Vis studies and TD-DFT calculations identified specific electronic structure perturbations of the supporting metal which poise NiML complexes for small-molecule binding. ETS-NOCV calculations indicate that H 2 binding primarily occurs via H–H σ-donation to the Ni 4p z -based LUMO, which is proposed to become energetically accessible as the Ni(0)→M( iii ) dative interaction increases for the larger M( iii ) ions. Linear free-energy relationships are discussed, with the activation barrier for H 2 binding (Δ G ‡ ) found to decrease proportionally for more thermodynamically favorable equilibria. The Δ G ° values for H 2 and N 2 binding to NiML complexes were also found to be more exergonic for the larger M( iii ) ions.more » « less
-
Abstract Formal nickelate(−I) complexes bearing Group 13 metalloligands (M=Al and Ga) were isolated. These 17 e−complexes were synthesized by one‐electron reduction of the corresponding Ni0→MIIIprecursors, and were investigated by single‐crystal X‐ray diffraction, EPR spectroscopy, and quantum chemical calculations. Collectively, the experimental and computational data support: 1) the strengthening of the Ni−M bond upon one‐electron reduction, and 2) the delocalization of the unpaired spin across the Ni and M atoms. An intriguing electronic configuration is revealed where three valence electrons occupy two σ‐type bonding interactions: Ni(3d)2→M and σ‐(Ni−M)1. The latter is an unusual Ni−M σ‐bonding molecular orbital that comprises primarily the Ni 4pzand M npz/ns atomic orbitals.more » « less
An official website of the United States government
